夜城直播_夜城直播app官方正版下载_夜城直播高品质美女在线视频互动社区

回顧2020:郭朝暉對創(chuàng)新/智能化/現(xiàn)代工業(yè)的一些認(rèn)識

2020/12/31 3:07:43 人評論 次瀏覽 分類:文化長廊  文章地址:http://m.prosperiteweb.com/community/3527.html

2021年元旦將至,又到了回顧的時候了。

2020年本來打算寫一本智能制造方面的書。6月份完成草稿后,恰逢疫情好轉(zhuǎn),也就沒有時間完成了。好在可以回顧2020寫的大約170篇筆記,看看今年的認(rèn)識在哪些地方有所深入。


1、創(chuàng)新理論的完善

我研究了20多年企業(yè)創(chuàng)新,距《管中窺道》的出版也十年了。過去每次講課,總還是覺得邏輯上有些不順。今年突然意識到:可以用漏斗理論把所有的想法串起來。

所謂漏斗理論就是:1000個想法中,只有100個值得深入思考;100個值得深入思考的想法中,只有10個值得嘗試;在這10個值得嘗試的想法中,大概只有1個能取得成功。


這個理論告訴我們很多道理。比如,如果企業(yè)不鼓勵大家提出創(chuàng)意,就難以成為創(chuàng)新的企業(yè);但如果有了創(chuàng)意就蠻干,也難以成為創(chuàng)新型企業(yè)。所以,既要鼓勵人們產(chǎn)生想法,又要慎重選擇和推進(jìn)。再如,創(chuàng)新的管理會變得特別重要,企業(yè)的創(chuàng)新能力極大地依賴于創(chuàng)新管理能力。


創(chuàng)新中有很多矛盾,過去講課時很難解釋:既要胡思亂想、又有認(rèn)真執(zhí)著;既有知難而上,又有知難而變、知難而退;既有一切從經(jīng)濟(jì)性出發(fā),又有“不惜一切代價”;既需要常識和經(jīng)驗、又需要科學(xué)和理論;是“人擇難題”,又有TRIZ工具;是技術(shù)問題,又是管理和文化問題。


現(xiàn)在,這些觀點都可以附著到這個“漏斗”的過程中:在不同的階段,要求不同。例如,創(chuàng)新起于胡思亂想,成于認(rèn)真執(zhí)著——在漏斗前面的階段要大膽去想,在后面的階段要認(rèn)真努力地執(zhí)行。再如,先要有常識,再要有知識;先要知道“知難而退”、“知難而變”,才有“知難而進(jìn)”;研發(fā)的過程要舍得花錢,優(yōu)化的過程要經(jīng)濟(jì)驅(qū)動等等。


過去,我總覺得中國的學(xué)術(shù)界缺乏工業(yè)常識。甚至覺得:在某些領(lǐng)域,90%的國家項目可以直接槍斃。所以,我一直強調(diào)常識很重要、要普及常識。但也有很多人質(zhì)疑我:常識就真的那么重要嗎?有了常識就能創(chuàng)新嗎?


現(xiàn)在,利用“漏斗”理論就可以解釋我的想法和質(zhì)疑:人們?nèi)狈ΤWR往往表現(xiàn)在篩選的第一階段,這個階段確實應(yīng)該否決90%的項目。但是,僅有這個階段還是不夠的,還要有后面若干個篩選階段,而且項目運作階段也有很多技巧。


另外,我過去既強調(diào)“條件和需求的改變是創(chuàng)新的機會”,又強調(diào)“創(chuàng)新要挖掘潛在需求”?,F(xiàn)在,我也可以把這兩個要求的關(guān)系講清楚了:超越前輩,要靠條件和需求的改變(天時);與同代人競爭,要靠挖掘潛在的需求(地利與人和)。


同時,我對需求的潛在性有了更深的認(rèn)識:除了回歸需求本源(解決需求與客觀條件的矛盾),就是認(rèn)識業(yè)務(wù)需求和經(jīng)濟(jì)需求的矛盾。所謂業(yè)務(wù)需求和經(jīng)濟(jì)需求的矛盾,就是我俗稱的“叫花子對御廚沒有需求”;或者“窮人對100萬元一粒的救命藥沒有需求”。而潛在需求的理論,又引發(fā)出“牽引需求”的實質(zhì)是什么。


2、深入認(rèn)識智能化

對于工業(yè)的智能,我一直有個說法就是“吳淑珍式的智能”。也就是把人的知識變成計算機的代碼、讓計算機執(zhí)行。今年又強調(diào)了另外一種智能“小秘書的智能”,也就是為人提供認(rèn)知的知識(比如設(shè)備不穩(wěn)定、操作不規(guī)范等)、幫助人決策的智能。我同時意識到:工業(yè)互聯(lián)網(wǎng)的“高級算法”,很多就是“小秘書的智能”。兩種智能的特點都是:讓機器用人類容易明白的道理,去做人做不好的事情,是從自動化到智能化的標(biāo)志之一。在最近的工業(yè)互聯(lián)網(wǎng)大賽中,符合這種理論的項目非常多。

這種智能產(chǎn)生的一個重要背景就是:在工業(yè)互聯(lián)網(wǎng)時代,成千上萬的數(shù)據(jù)上網(wǎng),導(dǎo)致數(shù)據(jù)太多、產(chǎn)生速度太快人類沒有辦法有效地關(guān)注和處理。需要讓機器幫助我們處理這些信息,從而把人類從數(shù)據(jù)的海洋中解脫出來。這種模式可以最大限度地發(fā)揮人和機器各自的優(yōu)勢。


與傳統(tǒng)的信息化相比,過去廠子出了問題時,是“人找數(shù)”:人到信息系統(tǒng)中尋找問題發(fā)生的原因。在智能化時代,出了問題時,是“數(shù)找人”:有問題需要關(guān)注時,機器自動推送給人。產(chǎn)生這種想法并不奇怪,但過去不容易實現(xiàn)。在數(shù)字化網(wǎng)絡(luò)化時代,計算機有更多的能力自動地找到原因?!靶∶貢钡淖饔?,也體現(xiàn)在這個地方。


從哲學(xué)的角度講,從自動化到智能化是“尺度變化”引發(fā)的“量變到質(zhì)變”的變化。


引發(fā)量變的“自變量”有兩個:一個是網(wǎng)絡(luò)化、一個是數(shù)字化。這兩化的本質(zhì)作用,是讓就算計具備決策(或輔助決策)的基本條件--這個基本條件就是:計算機必須得到?jīng)Q策所需的信息、知識和計算能力。這兩個變化帶來的結(jié)果,是智能化程度的提升--也就是自主決策(吳淑珍式的智能)和輔助決策(小秘書智能)的發(fā)展。


這個觀點,我稱之為“智能化發(fā)展的三條線索”。這三條線索,其實對應(yīng)工程院智能化發(fā)展的“三個范式”。但是,從三條線索的角度看問題,更容易用實踐來印證。過去和現(xiàn)在,我們都可以找到大量的案例。


智能化時代,為什么是“吳淑珍式的智能”、“小秘書式的智能”,而不是過去那種復(fù)雜算法呢(如最優(yōu)控制算法)?


最近,我對這個問題進(jìn)行了分析。我的解釋是:隨著系統(tǒng)變大、算法的使用時間變長,(理論)模型誤差往往是難以避免的(當(dāng)然,這與行業(yè)有關(guān))。這種變化,會導(dǎo)致標(biāo)準(zhǔn)化變得重要(拷貝不走樣)、定性的知識變得重要。


兩種知識的重要性增加,使得人類通過經(jīng)驗得到的知識變得重要。而數(shù)字化,可以進(jìn)一步讓人類定性的經(jīng)驗知識變得精確化。并且,交給計算機以后可以更加快速、準(zhǔn)確、標(biāo)準(zhǔn)化地響應(yīng)。


在定性知識應(yīng)用的過程中,往往與現(xiàn)代工業(yè)傳統(tǒng)的做法結(jié)合起來。如標(biāo)準(zhǔn)化方法、PDCA、FEMA、Checklist。我在一篇文章中,談到孔師傅對“聲音渾厚”的認(rèn)識,就是這個道理。


從這意義上講,先有標(biāo)準(zhǔn)化,才會有智能化。這種結(jié)合方式可能不是最優(yōu)的,但可以比過去做得更好。特別地,由于前面提到的原因,智能化系統(tǒng)的誤差是變化的。所以,系統(tǒng)的矯正就變得必不可少(實踐也證明了)。但是,矯正過程絕對不是某些人說的復(fù)雜的自學(xué)習(xí)。而是機器學(xué)習(xí)與人工的結(jié)合、是有套路的。這種結(jié)合經(jīng)常與標(biāo)準(zhǔn)和經(jīng)驗結(jié)合在一起。所以,PDCA的做法需要更加深入地引起重視。


另外,系統(tǒng)變大以后,多個學(xué)科的工作都融合起來了。比如,IT與OT的融合等。不久前,我分析了這種融合的特點:基于標(biāo)準(zhǔn)化的思想。只有這樣做,才是靠譜的。


從自動化到智能化的過程中,一個重要的變化是“從感知到認(rèn)知”。認(rèn)知的知識變得特別重要。而所謂的“認(rèn)知”與“標(biāo)準(zhǔn)”結(jié)合。用數(shù)據(jù)、曲線定義標(biāo)準(zhǔn),分場景定義標(biāo)準(zhǔn)等。所謂的認(rèn)知,往往就是判斷是不是“超標(biāo)”——因為往往只有超標(biāo),才是需要人類關(guān)注的。在數(shù)字化時代,很多工作都是可以用數(shù)字“標(biāo)準(zhǔn)化”的。所以,數(shù)字化時代有能力提高認(rèn)知能力,促進(jìn)從感知到認(rèn)知,從自動化到智能化。


從這個角度看,AI的主要作用其實也是提高認(rèn)知能力、尤其是與圖像相關(guān)的認(rèn)知能力。


3、認(rèn)識現(xiàn)代工業(yè)

我覺得,很多專家的觀點不靠譜,是因為他們不理解現(xiàn)代工業(yè)?,F(xiàn)代工業(yè)的特點,是通過持續(xù)不斷地改進(jìn),實現(xiàn)對質(zhì)量、效率、成本的追求。而這些問題,最后卡脖子的往往是安全、穩(wěn)定、可靠性問題。而為了解決這些問題,又引入了標(biāo)準(zhǔn)化、PDCA等概念。而標(biāo)準(zhǔn)化、PDCA等概念,才容易與數(shù)字化的方法對接、與現(xiàn)有的工業(yè)做法融合。

我經(jīng)常嘲笑的一些專家,本質(zhì)是不理解安全、可靠、穩(wěn)定性的價值和難度;不理解質(zhì)量與高科技的關(guān)系;不理解標(biāo)準(zhǔn)化的作用;不理解PDCA持續(xù)改進(jìn)的意義。而不理解這些,也就難以理解數(shù)字化轉(zhuǎn)型和智能化的具體做法。


我國工業(yè)界對數(shù)字化的認(rèn)識也存在誤區(qū)。這種誤區(qū)形成的原因是:過去中國企業(yè)的競爭力,本質(zhì)上是靠勞動力成本低(否則,企業(yè)可以嘗試到國外招人試試)。人們習(xí)慣于低的質(zhì)量水平、低的管理水平、對標(biāo)準(zhǔn)化的意義認(rèn)識不到位,高端研發(fā)服務(wù)的業(yè)務(wù)少。落后企業(yè)不理解數(shù)字化轉(zhuǎn)型,就像叫花子能夠想到的理想就是天天有饅頭吃,而想象不出皇帝吃什么。


在我看來,搞高科技并不需要搞天翻地覆的大事。只要在一定基礎(chǔ)上做持續(xù)改進(jìn)就行了,尤其是質(zhì)量的改進(jìn)。持續(xù)改進(jìn)的結(jié)果,就是積跬步以至千里。一件事做久了、越走越好,就是高科技。


在我看來,國外卡我們脖子的技術(shù),本質(zhì)上都是質(zhì)量不過關(guān)。質(zhì)量不過關(guān)是因為我們持續(xù)改進(jìn)的能力差、甚至基本停止。持續(xù)改進(jìn)的能力差的原因很多:市場的原因、驅(qū)動力的原因、重視程度的原因、改進(jìn)知識的原因。我們在推進(jìn)轉(zhuǎn)型時,要注意改變這些觀念。

比如,我國企業(yè),對研發(fā)工具開發(fā)的重視程度嚴(yán)重不夠。從某種意義上說,我們絕大多數(shù)企業(yè)的研發(fā)還處在手工勞動階段,而別人的研發(fā)卻處在現(xiàn)代化大生產(chǎn)階段。如果這個問題不解決,我國怎么能和別人競爭研發(fā)能力?

不重視工具,是急功近利的結(jié)果。工具的價值一直都是面向未來的。所謂“磨刀不誤砍柴工”。工具的開發(fā),一定會耽誤一點功夫。急功近利的企業(yè),就不會在乎。甚至根本意識不到研發(fā)工具的重要性。


其中,數(shù)字化技術(shù),是研發(fā)工具的重要組成部分。而數(shù)字化轉(zhuǎn)型,應(yīng)該為數(shù)字化研發(fā)工具的發(fā)展奠定基礎(chǔ)。


再如,企業(yè)的“優(yōu)化”和持續(xù)改進(jìn),是需要有人員配置的。在我國的很多企業(yè),并不把“優(yōu)化”當(dāng)成一種必要的工作,而是可有可無的。如果這樣,對數(shù)字化研發(fā)的拉動就是不足的。


另外,高科技發(fā)展的前提,是用戶和市場驅(qū)動。用戶驅(qū)動,指的是用真實的需求;市場驅(qū)動,指的是有足夠大的現(xiàn)實市場、賺到足夠的錢。我國高科技產(chǎn)業(yè)落后的本質(zhì)原因,都可以從這里找到。如果市場不足以養(yǎng)活一個高科技企業(yè),這個企業(yè)就難以生存,也就必然堅持不下去。


市場大是我們的優(yōu)勢,而市場被非市場因素分割,是我們的隱患?,F(xiàn)在,這種情況非常嚴(yán)重。


4、其他的一些想法

今年,我突然意識到把設(shè)計過程與選材、生產(chǎn)、采購、銷售過程聯(lián)系起來的重要性。我相信,未來的幾十年,在這個領(lǐng)域會有重大的突破。我擔(dān)心,我們國家會在這個領(lǐng)域落后。這類問題,國外沒有人炒作——人家真正重視的東西,往往是悶頭去做。等我們知道了,也就晚了。

數(shù)字化的價值為什么這么大? 我讀書的時候,人們說:數(shù)學(xué)是上帝描寫宇宙的符號。我認(rèn)為,這句話說出了數(shù)學(xué)的偉大。而現(xiàn)在,人們用數(shù)字化模型描述世界。這也就是數(shù)字化的偉大之處?,F(xiàn)在,我們具備了用數(shù)字化手段描述世界的能力,從而帶動了世界的數(shù)字化轉(zhuǎn)型。但用數(shù)字化過程描述世界的時候,會存在誤差——處理和應(yīng)對誤差的學(xué)問,是一門大學(xué)問。其實,控制論的產(chǎn)生,就與思考這個問題有關(guān)。


數(shù)字化的思維和我們?nèi)粘5乃季S方式不一樣。這種差別就像司機選路的思維方式和步行不一樣。要用好數(shù)字化的手段,就要學(xué)會數(shù)字化的思維方式。也就是把我們遇到的問題,轉(zhuǎn)化成一個計算的問題。問題轉(zhuǎn)化好了,辦法總是有的。在數(shù)字化背景下,仿真和枚舉的價值都是非常大的。因為這些算法具備一般性。


另外,今年還考慮了幾個問題:工業(yè)大數(shù)據(jù)的收集,應(yīng)該有什么要求?  工業(yè)APP是否一定是基于平臺的?智能技術(shù)與工藝技術(shù)、設(shè)備技術(shù)、控制技術(shù)的關(guān)系如何?數(shù)字孿生到底有什么用處?......這些問題的答案,是呼應(yīng)前面的想法。


今年特別高興的是,我年底當(dāng)了幾次大賽的評委。項目實踐證明:這些成功的應(yīng)用,往往符合我的設(shè)想和邏輯。過去, 我用自己的實踐產(chǎn)生自己的想法;現(xiàn)在,我用別人的實踐,印證自己的邏輯。


“我思故我在”。今年思考了一點問題,說明我還活著.....

作者:郭朝暉(工學(xué)博士,教授級高工。企業(yè)研發(fā)一線工作20年;
優(yōu)也科技信息公司首席科學(xué)家;東北大學(xué)、上海交大等多所院校兼職教授。國內(nèi)知名智庫、走向智能研究院的發(fā)起人之一。原寶鋼研究院首席研究員)郭朝暉

相關(guān)儀表推薦

共有訪客發(fā)表了評論 網(wǎng)友評論

  客戶姓名:
郵箱或QQ:
驗證碼: 看不清楚?